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Abstract: A conference key distribution is a scheme that allows the designated subset of users to compute a shared
key for secure communication. In this paper we analyze secure instances of conference key distribution based on
the ideas of Kolmogorov complexity. First, Kolmogorov complexity is used as a measure of the individual secu-
rity in conference key distribution, we present a model for conference key distribution in terms of Kolmogorov
complexity. Then, Kolmogorov complexity is used as a measure of the amount of randomness needed by secure
instances of conference key distribution. Thus we give the lower bounds holding in the model for each user needed
to store. Moreover, we give lower bounds on the amount of information in conference key distribution for various
types of combinatorial structures.
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1 Introduction
Key distribution is an important part in both theoret-
ical and practical cryptography. In a conference key
distribution system, a group of users obtains a shared
private key that is only known to the group member-
s. The key can be used for securing group commu-
nications. In conference key distribution systems, the
conference key can be computed by the conference
members without any interaction.

In many theoretical and application researches,
information measures play an important role in con-
ference key distribution. In conference key distribu-
tion schemes, the entropy based security property can
be formalized in information-theoretic security frame-
work. The entropy measures, includes Shannon, min
and Renyi entropies, are frequently used in confer-
ence key distribution schemes. Shannon entropy is
the most widely used information measure in confer-
ence key distribution schemes (see [5, 6, 7, 8, 9, 16] ).
Recently, min and Renyi entropies have been used in
key distribution schemes [1, 13, 17, 33]. Kolmogorov
complexity [23], known as algorithmic information
theory, measures the quantities of information in a
single string x, by the size of the smallest program
that generates it. Kolmogorov complexity and entropy
measure are two different measures. Relations be-
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tween Kolmogorov complexity and entropy measures
(including Shannon, min, Yao and Renyi entropies)
have been proposed in [22, 28, 37]. Kolmogorov com-
plexity has been used in various areas of cryptogra-
phy. Kolmogorov complexity is applied to analysis
the existence of pseudorandom generators in [2] and
one-way function in [4, 24, 25]. Tadaki and Doi [36]
investigated the secure instantiation of the random o-
racle using concepts and methods of algorithmic ran-
domness.

Traditionally, information-theoretic security is a
notion of average-case analysis for cryptographic sys-
tems. This notion based on Shannon entropy H(X)
which a measure of the average uncertainty in the ran-
dom variable X . Perfect secrecy [34] is a strong secu-
rity notion. We know that plaintexts M and cipher-
texts C are statistically independent does not mean
every plaintext m ∈ M and ciphertext c ∈ C are
(algorithmic) independent. This means even in un-
conditionally secure cryptosystems, there are partic-
ular instances are insecure in terms of Kolmogorov
complexity. In practice, a plaintext is encrypted into
a ciphertext, we should consider the algorithmic mu-
tual information I(m; c) between the plaintext m and
the ciphertext c, not the mutual information I(M ;C)
between plaintexts M and ciphertexts C. Also no-
tice that perfect secrecy implies the lower bound on
secret keys H(S) ≥ H(M). However, there are par-
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ticular instances with K(s) < K(m) in the case of
H(S) ≥ H(M). In the set of binary strings {0, 1}n,
many x ∈ {0, 1}n have low Kolmogorov complex-
ity even if the adversary does not know the cipher-
text. For example, the Kolmogorov complexity of
111 · · · 11 ∈ {0, 1}n is almost vanishing, which can
not be used as a key in our daily life. So entropy based
security is a notion of average case security, which
cannot replace individual instance security. Antunes
et al. [3] proposed cryptographic security of individ-
ual instances based on Kolmogorov complexity and
characterized the relation between instance security
and information theoretic security. Recently, securi-
ty of individual instances in the frame work of Kol-
mogorov complexity for secret sharing schemes have
been studied in [3, 12, 18]. Here, we consider the Kol-
mogorov complexity based security of conference key
distribution and the lower bounds holding for each us-
er needed to store in conference key distribution.

By varying the designs of conferences, we can
generate various schemes. There have been numerous
proposals for key distribution schemes based on vari-
ous types of combinatorial structures. Blom [6] pro-
posed a key predistribution scheme for conferences.
Matsumoto and Imai [26] extended this work to con-
ferences of size larger than two. Blundo et al. [8] pro-
posed a key distribution scheme for communication
graphs and asymmetric communication models. Fiat
and Naor [15] used a combinatorial approach to con-
struct key distribution schemes. Camtepe and Yen-
er [11] introduced the use of combinatorial design-
s in key predistribution schemes. Many researcher-
s continued to further develop this combinatorial ap-
proach. Lee and Stinson [19, 20, 21] gave a construc-
tion based on transversal designs, Dong et al. [14]
used 3-designs, Ruj and Roy [29] used partially bal-
anced designs, and Bose et al. [10] and Ruj et al.
[30, 31, 32] used balanced incomplete block designs
in key predistribution schemes. Paterson and Stinson
[27] provided a general framework for these combina-
torial key predistribution schemes.

In this paper, we study conference key distribu-
tion schemes by using Kolmogorov complexity. In
Section 2, we recall related works of individual se-
curity for cryptographic systems. In Section 3, we
give some preliminaries on Kolmogorov complexity.
In Section 4, we present a model for conference key
distribution in terms of Kolmogorov complexity. In
Section 5, we present the lower bounds holding in the
model of conference key distribution. In Section 6,
we use combinatorial designs for conference key dis-
tribution and present lower bounds on the amount of
information (in Kolmogorov complexity) that each us-
er has to store for various types of combinatorial struc-
tures. The conclusion and future work are presented

in Section 7.

2 Related works

There are several researches related to security of in-
dividual instances in the frame work of Kolmogorov
complexity for cryptographic systems. We list some
researches on the individual security of cryptographic
systems, cipher systems and secret sharing schemes.

2.1 Individual Secrecy of Cipher Systems

A private key cipher system is a five tuple
(M,C, S, e, d), where M is the plaintext space, C is
the ciphertext space, S is the key space, e : S×M→C
is the encryption algorithm, d : S×C→M is the de-
cryption algorithm and d(k, e(k,m)) = m.

Antunes et al. [3] introduced the following con-
cept.

Definition 1. Let (M,C, S, e, d) be a private key ci-
pher system, f be a distribution over M × S. An
instance (m, s) of the system is ε-secure if I(m :
e(s,m)|f)≤ε.
Theorem 1. Let (M,C, S, e, d) be a private key ci-
pher system, f be a distribution over M × S. If
the probability that an instance is ε-secure is at
least (1 − δ), then the system has (ε + δ log |M |)-
secure,i.e.,I(M ;C)≤ε+ δ log |M |.

2.2 Individual Secrecy of Threshold Secret
Sharing Schemes

A (t, n)-threshold secret sharing scheme is a four tu-
ple (S, V, fshare, fcomb), where S is the set of se-
cret information, V is the set of shares for all users,
|V | = n, fshare is an algorithm for generating shares
for all users, fcomb is an algorithm for recovering a
secret.

There are several researches related to individual
security of secret sharing schemes [3, 12, 18]. For
simplicity, we only recall the individual security of
threshold scheme in [3].

Definition 2. Let (S, V, fshare, fcomb) be a (t, n)-
threshold secret sharing scheme. An instance
(s, v1, v2, ..., vn) is ε-secure if

I(m : (vi1 , ...vit−1))≤ε,
for any (vi1 , ...vit−1) ⊆ (v1, v2, ..., vn).

Theorem 2. Let (S, V, fshare, fcomb) be a (t, n)-
threshold secret sharing scheme, f be a distribution
over S × V[n]. If the probability that an instance
is ε-secure is at least (1−δ), then the scheme has
(ε+ δ log |S|) secrecy.
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3 Preliminaries

String means a finite binary string. The set of all finite
binary strings is denoted by Σ∗ := {0, 1}∗. Func-
tion log represents the function log2. |x| represents
the length of a string x. For the cardinality of a set A
we write |A|. We first briefly recall some basic notions
of Kolmogorov complexity [23].

Definition 3. The conditional Kolmogorov complex-
ity K(y|x) of with y condition x, with respect to a
universal Turing machine U , is defined by

KU (y|x) = min{|p| : U(p, x) = y}. (1)

Let U be a universal computer, then for any other
computer F :

KU (y|x) ≤ KF (y|x) + cF . (2)

for all x, y, where cF depends on F but not on
x, y. So we fix such a universal machine U , write
K(y|x) := KU (y|x), and call K(y|x) the conditional
Kolmogorov complexity of y with respect to x. The
(unconditional) Kolmogorov complexity KU (y|Λ) of
y is defined as where Λ is the empty string.

Let
+
≤ be an inequality to within an additive con-

stant, and +
= be the situation when both

+
≤ and

+
≥ hold.

The algorithmic entropy of y with respect to x is

H(y|x) := −log
∑

p:U(p,x)=y

2−l(p), (3)

and we have

H(y|x)
+
= K(y|x). (4)

The mutual algorithmic information between x
and y is the quantity

I(x : y) = K(x)−K(x|y). (5)

We consider x and y to be algorithmic independent
whenever I(x : y) is zero.

In algorithmic information theory, symmetry of
information phenomenon for strings was known that
if x has a constant amount information about y, then
y has O(log n) information about x.

Similar to
+
≤ and +

=,
log
≤ is used to denote an in-

equality to within an additive logarithmic term, and
log
= to denote the situation when both

log
≤ and

log
≥ hold.

Theorem 3 (Symmetry of Algorithmic Information).
(See [4, 24, 25].) For all strings x and y in {0, 1}n

K(x, y)
log
= K(x) +K(y|x). (6)

Within logarithmic error, I(x : y) represents both
the information in about x and y that in about y and x,
i.e.,

I(x : y)
log
= I(y : x). (7)

Up to an additive logarithmic term, K(x, y) is
the length of the shortest program such that U com-
putes both x and y and away to tell them apart (See
[23],p.109), i.e.,

K(x, y)
log
≤ K(x) +K(y) (8)

for all x, y.

4 The Model

In this section we formally describe the key distribu-
tion problem and model.

Let [n] := {1, 2, ..., n} be a finite set of IDs
of n users. For every i ∈ [n], let ui be informa-
tion of the user i. Similarly, for any subset X :=
{i1, i2, ..., iu} ⊂ [n], uX := {ui1 , ui2 , ..., uiu}. We
denote by SY the common key for the group Y ⊂ [n].
An instance of t-conference key distribution is denot-
ed by (sX , u[n]) where sX ∈ SX , u[n] ∈ U[n].

Definition 4. Let t andw be nonnegative integers with
w + t ≤ n. An instance (sX , u[n])of t-conference key
distribution is w-secure for n users if:

1. Each t user can compute the common key. For-
mally, for all X ⊂ [n] with |X| = t, for each user i,
i ∈ X , it holds that

K(sX |ui)
+
= 0. (9)

2. Any group of w users have no algorithmic in-
formation on any key they should not know. Formally,
for all Y,X ⊆ [1, 2, ..., n], with |Y | = w, |X| = t,
and X ∩ Y = ∅, it holds that

K(sX)
+
= K(sX |uY ). (10)

Notice that K(sX) = K(sX |uY ) is equivalent
to saying that sXand uY are algorithmic independent.
Thus, the values uY reveal no algorithmic information
on the common key sX .

This security notion is also based on algorithmic
entropy because of Eq.(4).

Moreover, property 2 can be equivalently written
as;

2’. For all Y,X ⊂ [n], with |Y | = w,|X| = t,
and X

⋂
Y = ∅, it holds that

I(sX ;uY )
+
= 0 (11)
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We use Kolmogorov complexity to define what
it means for an individual instance of a confer-
ence key distribution system to be secure. We now
prove that if almost all individual instances of a
conference key distribution system are secure with
K(sX)

+
=K(sX |uY ), then the system is almost per-

fect secure.

Theorem 4. For any conference key distribution sys-
tem, if the probability that an instance (sX , u[n])is se-

cure withK(sX)
+
=K(sX |uY ) is at least 1− 1

|sX+uY |c
for some constant c, then the system is secure with
I(SX; UY) ≤ 1

|sX+uY |c−1

Proof. We have that up to an additive constant,
I(SX; UY) ≤

∑
sX ,uY

f(sX , uY )I(sX ;uY ), where
f is the distribution over S[n] × U[n]. Let Q =

{(sX , uY )|K(sX)
+
=K(sX |uY )} for a fixed constant

c, then we have

I(SX ;UY ) ≤
∑

(sX ,uY )∈Q

f(sX , uY )I(sX ;uY )

+
∑

(sX ,uY )/∈Q

f(sX , uY )I(sX ;uY )

+
≤ K

∑
(sX ,uY )/∈Q

f(sX , uY )I(sX ;uY )

+
≤ 1

|sX + uY |c
(K(sX)−K(sX |uY ))

+
≤ 1

|sX + uY |c
K(sX)

+
≤ 1

|sX + uY |c−1
.

Thus, up to an additive constant, I(SX; UY) ≤
1

|sX+uY |c−1 .

This result shows that Kolmogorov complexity
based security is a sharper notion than entropy based
security for conference key distribution.

5 Lower bound

In this section, we prove lower bound on the amount
of information (in Kolmogorov complexity) of the us-
er in aw-secure t-conference key distribution scheme.

Up to an additive logarithmic term, the knowl-
edge of wkeys does not convey more information on
any other key in a w-secure t-conference key distribu-
tion scheme. This is formalized by the next lemma.

Lemma 1. Let r, w, and t be integers with w+ t ≤ n.
LetX,Y1, ..., Yr, Z ⊆ [n] such that |Z| = w,Z∩X =
∅, Z ∩ Yi 6= ∅ and |X| = |Yi| = t, for i = 1, ..., r. If
an instance (sX , u[n])of t-conference key distribution
is w-secure for n users. Then,

K(sX |sY1 , · · · , sYr)
log
≥ K(sX). (12)

Proof. First, by property 1, we have

I(sY1 , · · · , sYr ; sX |uZ)

= K(sY1 , · · · , sYr |uZ)

−K(sY1 , · · · , sYr |uZ , SX)

≤ K(sY1 , · · · , sYr |uZ)
log
≤ K(sY1 |uZ) + · · ·+K(sYr |uZ)
log
≤ 0.

Then by the symmetry of algorithmic informa-
tion,

I(sY1 , · · · , sYr ; sX |uZ)
log
= I(sX ; sY1 , · · · , sYr |uZ).

This means

K(sX |uZ)−K(sX |uZ , sY1 , · · · , sYr)
log
≤ 0,

i.e.,

K(sX |uZ)
log
≤ K(sX |uZ , sY1 , · · · , sYr).

Then we have

K(sX)
+
= K(sX |uZ)
log
≤ K(sX |uZ , sY1 , · · · , sYr)
≤ K(sX |sY1 , · · · , sYr) +O(1).

Therefore, K(sX)
log
≤ K(sX |sY1 , · · · , sYr).

Then we obtain a lower bound on the amount of
information (in Kolmogorov complexity) of the each
user.

Theorem 5. Let k and t be integers with k + t ≤ n.
Let (sX , u[n])an instance of w-secure t-conference

key distribution for n users, if K(sX)
log
= µ for all

X ⊂ [n] with |X| = t, then the Kolmogorov com-
plexity K(ui) satisfies

K(Ui)
log
≥
(
k + t− 1

t− 1

)
µ. (13)
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Proof. Consider the set of indices I = [j1, ..., jk+t−1]
and an index i such that i /∈ I . Define set C as C =
[j1, ..., jk] and set A as A = [i, jk+ 1, ..., jk+ t− 1].
Letm =

(
k+t−1
t−1

)
. Bl, for l = 1, 2, ...,m, is construct-

ed taking the element i along with any (t−1) elements
from the set I , with the exception of [jk+1, ..., jk+t−1],
i.e.,

Bl ∈ {{i, x1, ..., xt−1}|x1, ..., xt−1 ∈ I,
{x1, ..., xt−1} 6= {[jk+1, ..., jk+t−1}}.

From symmetry of algorithmic information and
property 2, we have

K(ui)−K(ui|sB1 , · · · , sBm , sA)
log
= K(sB1 , · · · , sBm , sA)

−K(sB1 , · · · , sBm , sA|ui)
log
≥ K(sB1 , · · · , sBm , sA)

−
m∑
l=1

K(sBl |ui)−K(sA|ui)

log
≥ K(sB1 , · · · , sBm , sA).

Moreover, by symmetry of algorithmic informa-
tion

K(ui)
log
≥ K(sB1 , · · · , sBm , sA)

= K(sB1) +K(sB2 |sB1)+, · · · ,
+K(sA|sB1 , · · · , sBm)

Let X = A,Z = C, and Yi = Bi for i =
1, ...,m, by lemma 1

K(sA|sB1 , · · · , sBm)
log
≥ K(sX)

Moreover, for each h, 1 ≤ h ≤ m, let X =
Bh, Z = I/Bh , and Yi = Bi , for i = 1, ..., h − 1.
Then,

K(sBh |sB1 , · · · , sBh−1
)
log
≥ K(sBh)

Therefore,

K(ui)
log
≥ K(sB1 , · · · , sBm , sA)
log
≥ K(sB1) +K(sB2 |sB1)+, · · · ,

+K(sA|sB1 , · · · , sBm)
log
≥ K(sB1) +K(sB2)+, · · · ,+K(sA)
log
≥ (m+ 1)µ

=

(
k + t− 1

t− 1

)
µ.

6 Instance Security of conference
key distribution for combinatorial
framework

By varying the designs of conferences, we can gen-
erate various schemes and this makes the model quite
flexible. In this section, we use combinatorial designs
for conference key distribution. First we formally de-
fine the combinatorial framework we use in this paper.
This framework is employed in several recent papers
[27, 29, 30, 31, 32]. Then Conference key distribution
schemes for various types of combinatorial structures
are discussed.

We begin with the definition of a design [27]. A
combinatorial design (or, a design) is a pair (U,Γ),
where Γ is a finite set of subsets of U called blocks.
The number of blocks containing a point x ∈ U is
called the degree of x . If all points have the same
degree r, then (U,Γ) is called to be regular (of degree
r) . The rank of (U,Γ) is the size of the largest block.
If all blocks have the same size k, then (U,Γ) is said
to be uniform (of rank k).

Example 1. Let

U = {1, 2, 3, 4, 5, 6, 7, 8},

and

A = {1234, 4568, 1256, 3478, 1278, 3456}.

Then (U,A) is a design in which there are eight
points and six blocks. This design is regular of degree
3 and uniform of rank 4.

A design (U,Γ) is used as the key ring space. In
a w-conference key distribution scheme for n users
each block of users is able to compute a common key.
It can be the case that some t-tuples of users will never
need to compute a common key.

Definition 4 can be extended to a key distribution
scheme for any combinatorial design (U,A), as
follows.

Definition 5. Let (U,A) is a design, U = {Ui : 1 ≤
i ≤ n} and A = {Aj : 1 ≤ j ≤ b}. A non-interactive
key distribution scheme for (U,A) is secure if

1”. Each block of users can non-interactively
compute the common key. For all Ui ∈ Aj ,

K(SAj |Ui)
+
= 0. (14)

WSEAS TRANSACTIONS on COMMUNICATIONS Songsong Dai, Sizhao Li, Yangbing Wu, Donghui Guo

E-ISSN: 2224-2864 115 Volume 17, 2018



2”. Any group of w users have no information on
a key they should not know. Formally, for all X ⊆ U ,
with |X| = w and X ∩ Y = ∅, it holds that

K(SAj )
+
= K(SAj |UX). (15)

for any Aj , 1 ≤ j ≤ b, with X ∩Aj = ∅.

Then we obtain a lower bound on the amount of
information (in Kolmogorov complexity) of the each
user for the above security model of conference key
distribution.

Theorem 6. Let (U,Γ) be a design with U := [n] and
Γ := {Aj : 1 ≤ j ≤ b}, Suppose that all keys have
the same Kolmogorov complexity within an additive

logarithmic term, i.e. , K(sAj )
log
= µ, for all Aj ∈ Γ,

1 ≤ j ≤ b. If a key distribution instance (sA, u[n]) is
w-secure for (U,Γ), then the Kolmogorov complexity
K(ui) of each user satisfies

K(ui)
log
≥ λ · µ (16)

where λ = min{w + 1, deg(i)} .

Proof. LetA1, ..., Aγ be blocks containing i of the de-
sign described by (U,Γ). Then

K(ui)−K(ui|sA1 , · · · , sAγ )

log
= K(sA1 , · · · , sAγ )−K(sA1 , · · · , sAγ |ui).

Then from property 1”, we have

K(ui)
log
≥ K(sA1 , · · · , sAγ )−K(sA1 , · · · , sAγ |ui)
log
≥ K(sA1 |sA2) +K(sA2 |sA1)+, · · · ,

+K(sAγ |sA2 , ..., sAγ )−
γ∑
l=1

K(sAl |ui)

log
≥ K(sA1) +K(sA2)+, · · · ,+K(sAγ )− 0

log
≥ γ · µ

We have discussed the non-interactive conference
key distribution for combinatorial designs based on
Kolmogorov complexity. There are several combina-
torial structures widely used in key distribution. Nex-
t we discuss conference key distribution schemes for
various types of combinatorial structures, such as par-
tially balanced t-designs, transversal designs, commu-
nication graph and asymmetric communication mod-
els.

6.1 Partially balanced t-design

Let v, k, t be positive integers and let λi be a positive
integer, for 0 ≤ i ≤ t − 1. A t − (v, k, λ0, ..., λt−1)-
partially balanced t-design [27] is a pair (U,Γ) that
satisfies the following properties:

1. (U,Γ) is uniform of rank k, i.e., Γ is a set of
k-subsets of U .

2. |Γ| = λ0.
3. For 1 ≤ i ≤ t − 1, every i-subset of points

occurs in either 0 or λi blocks.
4. For t ≤ i ≤ k, every i-subset of points occurs

in either 0 or 1 blocks.

A partially balanced t-design is a design of degree
r = γ1 , i.e., every point occurs in exactly γ1 blocks
[27]. Then from theorem 6, we have next corollary
that the lower bound on the size of user’s information
in a w-secure key distribution scheme for a partially
balanced t-design.

Corollary 1. Let (U,Γ) be a t − (v, k, γ0, ..., γt−1)-
partially balanced t-design with U := [n]. suppose

that K(sAj )
log
= µ for all Aj ∈ Γ, 1 ≤ j ≤ b. If a key

distribution instance (sA, u[n]) is w-secure for (U,Γ),
then the Kolmogorov complexity K(ui) of each user
satisfies

K(ui)
log
≥ λ · µ (17)

where λ = min{w + 1, γ1} .

6.2 Transversal design

A transversal design TD(t, k, n) [27, 31, 35], with
kgroups of size n and indexγ, is a triple (U,H,Γ)
where:

1, |U | = kn.
2,H is a partition of U into k parts of size n.
3, (U,Γ) is uniform of rank k, i.e., Γ is a set of

k-subsets of U .
4, |H ∩A| = 1 for every H ∈ H and A ∈ A
5, Every t-subsets of U from t different parts

occurs in exactly one block in Γ.

The following result follows from simple count-
ing in [27] .

Lemma 2. Suppose (U,H,A) is a transversal design
TD(t, k, n). Then (U,A) is a t− (v, k, λ0, ..., λt−1)-
partially balanced t-design where v = kn and λi =
nt−i for 0 ≤ i ≤ t− 1.

Then by lemma 2 and corollary 1, we have nex-
t corollary that the lower bound on the size of user’s
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Figure 1: Communication graph

information in a noninteractive w-secure key distribu-
tion scheme for a transversal design TD(t, k, n).

Corollary 2. Let (U,H,Γ) be a transversal design
TD(t, k, n). Let w be a known integer with w + k ≤
kn, suppose that K(sAj )

log
= µ for all Aj ∈ Γ, 1 ≤

j ≤ b. If a key distribution instance (sA, u[n]) is w-
secure for (U,H,Γ), then the Kolmogorov complexity
K(ui) of each user satisfies

K(ui)
log
≥ λ · µ (18)

where λ = min{w + 1, nt−1} .

6.3 Communication graph

Communication graph [8] is a communication struc-
ture, which contains all possible pairs (conferences).
Communication graph C is a subset of U × U , as
shown in Fig. 1. The communication structure C is a
uniform design of rank 2.

The next corollary gives a lower bound on the size
of user’s information in a w-secure key distribution
scheme for a communication graph. Its proof is very
similar to the proof of Theorem 3, so it is omitted.

Corollary 3. Let U be a set of n users, C be a com-
munication graph on U . Let w be a known integer

with w + 2 ≤ n, suppose that K(sAj )
log
= µ for al-

l Aj ∈ C. If a key distribution instance (sA, u[n]) is
w-secure for C, the Kolmogorov complexity K(ui) of
each user satisfies

K(ui)
log
≥ λ · µ (19)

where λ = min{w + 1, deg(i)} .
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Figure 2: The asymmetric model

6.4 The asymmetric model

An asymmetric key distribution [8] distributes some
information among a clients set A and a system-
servers set B. Each pair consisting of a system-server
and a client is able to compute a common key. A
client is not able to claim to be a system-server nor
is a system-server able to claim to be a client. This
is called the asymmetric key distribution for clients
set A and system-servers set B. It is w-secure if
any w entities (clients, system-servers, or both) have
no information on any common key they should
not know. Formally, the asymmetric model is a
combinatorial design (U, (A,B), C) where:

1, |U | = m+ n.
2, (A,B) is a partition of U into 2 parts with

|A| = n, |B| = m.
3, (U,C) is uniform of rank k, i.e., C is a set of

2-subsets of U .
4, For each C, |C

⋂
A| = 1and |C

⋂
B| = 1.

5, Every 2-subsets of U from 2 different parts
occurs in exactly one block in C.

The asymmetric model (U, (A,B), C) is a com-
binatorial design of degree max{m,n} in which there
are m+ n points and 2 blocks, as shown in Fig. 2.

Corollary 4. Let (U, (A,B), C) be a asymmetric
model and letwbe an integer withw+2 ≤ n+m. Sup-

pose that K(sAj )
log
= µ1 for all Aj ∈ A, K(sBj )

log
= µ2

for all Bj ∈ B. If an asymmetric key distribu-
tion instance is w-secure for the asymmetric model
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(U, (A,B), C), then for i ∈ A, K(ui) satisfies

K(ui)
log
≥ λ · µ1 (20)

where λ = min{w + 1,m} , while for i ∈ B, K(ui)
satisfies

K(ui)
log
≥ λ · µ2 (21)

where λ = min{w + 1, n} .

7 Conclusions

In this paper we studied conference key distribution
based on Kolmogorov complexity. We considered
definitions of security for conference key distribution.
We derived a lower bound for the Kolmogorov com-
plexity of user key, K(ui), for conference key distri-
bution. Then, we considered conference key distribu-
tion for a general class of combinatorial designs and
we gave the bounds on the amount of information of
user. Finally, we discussed conference key distribu-
tion for partially balanced t-designs, transversal de-
signs, communication graph and asymmetric commu-
nication models.

An interesting area for further research is to anal-
yse interactive conference key distribution based on
Kolmogorov Complexity. For example, the amount of
the user’s information (in Kolmogorov Complexity)
for a one-round key distribution scheme.
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